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We analyze the stochastic response of a finite set of globally coupled noisy bistable units driven by rather
weak time-periodic forces. We focus on the stochastic resonance and phase frequency synchronization of the
collective variable, defined as the arithmetic mean of the variable characterizing each element of the array. For
single-unit systems, stochastic resonance can be understood with the powerful tools of linear response theory.
Proper noise-induced phase frequency synchronization for a single-unit system in this linear response regime
does not exist. For coupled arrays, our numerical simulations indicate an enhancement of the stochastic
resonance effects leading to gains larger than unity as well as genuine phase frequency synchronization. The
nonmonotonicity of the response with the strength of the coupling strength is investigated. Comparison with
simplifying schemes proposed in the literature to describe the random response of the collective variable is
carried out.
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I. INTRODUCTION

The response of noisy nonlinear systems driven by weak
external driving terms is frequently analyzed with the pow-
erful tools of linear response theory �LRT� �1,2�. The ampli-
fication of the amplitude of the average response with the
noise strength as well as the nonmonotonic behaviors of the
amplitude and of the output signal-to-noise ratio are mani-
festations of stochastic resonance �SR� �3�. These behaviors
have been indeed rationalized using the ideas of LRT �4�.
Within the linear regime described by LRT, the response of
the nonlinear system is necessarily very noisy. The output
noise level is much higher and the decay time of the fluctua-
tions much longer than those present in a linear system sub-
ject to the same noise and driving terms. Consequently, the
signal-to-noise ratio of the nonlinear system in that regime is
very small, even at its peak value, and the gain does not
exceed unity �5�. If one is interested in obtaining large aver-
age amplitudes and large signal-to-noise ratio, one must find
a way to control the output fluctuations and this is only pos-
sible in a nonlinear regime.

A possible way to reduce the output fluctuation levels in
noise-induced SR is to use external driving terms with am-
plitudes so large that, even though they are still subthreshold,
they alter significantly the potential relief of the dynamics
and render invalid the LRT assumptions �6�. Another possi-
bility is to concentrate on the global response of a set of
nonlinear oscillators. In �7–10� the enhancement of SR ef-
fects in arrays of linearly or nonlinearly globally coupled
arrays of bistable systems were studied. Array-enhanced sto-
chastic resonance effects for an oscillator coupled to an array
of locally coupled identical oscillators have also been re-
ported in �11�. More recently �12,13�, we have analyzed the
collective response of a finite set of globally coupled bistable
systems. We demonstrated that SR is much enhanced with
respect to SR in single bistable units. Indeed, gains larger
than unity were observed for subthreshold sinusoidal driving

forces. Those findings indicated that the arrays were indeed
operating in nonlinear regimes.

Another aspect of the stochastic response of the system
refers to its noise-induced synchronization with the driving
term. By a suitable definition of a phase associated to the
random output process, one can define an output average
phase frequency and a phase dispersion. The matching of the
phase frequency with the driving frequency for a range of
noise values is what is termed noise-induced frequency syn-
chronization. It has been analyzed with a variety of analyti-
cal and numerical procedures �14–17�, even in circumstances
where quantum tunneling effects are relevant �18�. In �19�
noise-induced phase synchronization of the collective vari-
able for wide ranges of noise values was also observed when
the array was driven by subthreshold inputs.

The results reported in the above-mentioned work were
obtained with driving terms that, even though they were un-
able to produce the cited effects in the absence of noise, they
were large enough to invalidate LRT when applied to a
single bistable system. The question we address in the
present work is whether the enhancement of SR and synchro-
nization effects in the collective response of finite arrays of
bistable units still persist when the driving external force is
rather weak. By weak, we will mean here that �i� the SR
effects induced by the external driving in a single bistable
unit can be satisfactorily described, even at a quantitative
level, by the LRT approximation; and �ii� noise-induced
phase frequency synchronization in a single bistable unit
does not properly exist.

In the next section, we introduce the model system and
define the relevant quantities that characterize the phenom-
enon of SR and phase synchronization. In Sec. III we show
the results obtained by numerically solving the dynamical
stochastic equations. Comparison with the predictions of re-
cently formulated approximate descriptions of the collective
dynamics �20,21� is carried out in Sec. IV. The last section
concludes with some remarks.

II. MODEL AND DEFINITIONS

We consider a set of N identical subsystems, each of them
characterized by a variable xi�t� �i=1, . . . ,N� satisfying a sto-*casado@us.es
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chastic evolution equation �in dimensionless form� of the
type �12,20,22�

ẋi = xi − xi
3 +

�

N
�
j=1

N

�xj − xi� + �2D�i�t� + F�t� . �1�

The external driving force is periodic in t, F�t�=F�t+T�. The
term �i�t� represents a white noise with zero average and
��i�t�� j�s��=�ij��t−s�. We define a collective variable S�t�,

S�t� =
1

N
�

j

xj�t� , �2�

and concentrate on its long-time response when the system
size N is kept finite and the amplitude of the driving term is
weak in the sense indicated in Sec. I. We define the one-time
correlation function

L��� =
1

T
	

0

T

dt�S�t�S�t + ���*. �3�

The notation �¯� indicates an average over the noise real-
izations and the subscript asterisk indicates the long-time
limit of the noise average, i.e., its value after waiting for t
large enough that transients have died out. As shown in our
previous work �12�, we have that

L��� = Lcoh��� + Lincoh��� , �4�

where the coherent part Lcoh��� is periodic in � with the pe-
riod of the driving force, while the incoherent part Lincoh���
arising from the fluctuations of the output S�t� around its
average value, decays to zero as � increases. The output
signal-to-noise ratio �SNR� Rout is

Rout = lim
�→0+

	
�−�

�+�

d� L̃���

L̃incoh���
=

L̃coh���

L̃incoh���
, �5�

where � is the fundamental frequency of the driving force

F�t�, L̃coh��� is the corresponding Fourier coefficient in the

Fourier series expansion of Lcoh���, and L̃incoh��� is the Fou-
rier transform at frequency � of Lincoh���.

For a set of N coupled linear oscillators driven by an
external driving force F�t� and subject to the noise terms �i�t�
as in Eq. �1�, the SNR of the corresponding collective pro-
cess, Rout

�L�, coincides with that of the random process formed
by the arithmetic mean of the individual noise terms �i�t�
plus the deterministic driving force F�t�, namely, F�t�+��t�
with ��t�=N−1�i=1

N �i�t�. The process ��t� is a Gaussian white
noise of effective strength D /N. In this work, we have con-
sidered an external periodic rectangular driving,

F�t� = �− 1�n�t�A , �6�

where n�t�= �2t /T�; �z� is the floor function of z, i.e., the
greatest integer less than or equal to z. In other words, F�t�
=A �F�t�=−A� if t� �nT /2, �n+1�T /2� with n even �odd�.
Then it is easy to prove that

Rout
�L� =

4A2N

	D
. �7�

Thus, for our nonlinear case, it seems convenient to analyze
the SR gain G defined as �12�

G =
Rout

Rout
�L� , �8�

which compares the SNR of a nonlinear system with that of
a linear system subject to the same stochastic and determin-
istic forces.

In the case of noninteracting units ��=0�, the SNR of the
collective output is N times larger than that of a isolated unit
driven by the same force. Nonetheless, as discussed in �12�,
the gain associated with the collective output is just the same
as the one of a single, isolated, unit. Thus, for the weak
forces that we are considering here, we expect that the col-
lective gain will not exceed unity. As seen below, our nu-
merical results will confirm that expectation.

Another aspect of the response is the noise induced phase
frequency synchronization. We note that for low noise
strengths and driving forces with sufficiently large periods, a
random trajectory of S�t� contains essentially small fluctua-
tions around two values �attractors� and random, sporadic
transitions between them. For each realization of the noise
term, we then introduce a random phase process 
�t� asso-
ciated with the stochastic variable S�t� as follows. We refer
to a “jump” of S�t� along a trajectory, when a very large
fluctuation takes the S�t� trajectory from a value near an
attractor to a value in the neighborhood of the other attractor.
We count N����t�, the number of jumps in the � trajectory of
the process S�t� within the interval �0, t�. A trajectory of the
phase process is then constructed as


����t� = 	N����t� , �9�

so that 
�t� increases by 2	 after every two consecutive
jumps.

The first two moments of the phase process are estimated
as

�
�t�� =
1

M �
�=1

M


����t� , �10�

v�t� = ��
�t��2� − �
�t��2

=
1

M �
�=1

M

�
����t��2 −
1

M2
�
�=1

M


����t��2

�11�

where M is the number of generated random trajectories.
The instantaneous phase frequency is easily determined

from the time derivative of �
�t��. After a sufficiently large
number of periods of the driving force, n, the system forgets
its initial preparation, but the instantaneous phase frequency
is still a function of time. Then, we define a cycle average

phase frequency �̄ph by averaging the instantaneous phase
frequency over a period of the external driving �18,23�
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�̄ph =
1

T
	

nT

�n+1�T

dt
d�
�t��

dt
=

�
��n + 1�T�� − �
�nT��
T

.

�12�

Similarly, the cycle average phase diffusion coefficient is
evaluated from the instantaneous slope of the variance v�t�
as �18,23�

D̄ph =
1

T
	

nT

�n+1�T

dt
d�v�t��

dt
=

v��n + 1�T� − v�nT�
T

. �13�

In previous works, approximate analytical expressions for
these two quantities have been derived for the N=1 problem
in the classical �23–26� and quantum cases �18�. Those ex-
pressions can not be applied to the collective variable of an
N-particle problem,

III. NUMERICAL RESULTS

In general, nonlinearities preclude exact analytical solu-
tions of Eqs. �1�. We will use numerical simulations to obtain
useful information about the stochastic process S�t�. In the
asymptotic limit N→�, Desai and Zwanzig �22� showed that
the statistical properties of the model could be analyzed in
terms of a nonlinear Fokker-Planck equation which allows
the coexistence of several stable probability distributions for
some ranges of noise strengths and coupling constants. In the
same asymptotic limit, we analyzed a few years ago the sto-
chastic resonant behavior of the first moment �S�t��* when
the system is driven by a time-dependent sinusoidal force,
using a combination of analytical and numerical procedures
�9�. In particular, for very weak input amplitudes, a linear
response theory analysis showed that a huge amplification in
the amplitude of the average output �S�t��* with respect to
that of the driving force could be achieved.

In this work we concentrate on situations where �i� the
number of subunits is finite; �ii� the amplitude of the driving
force is rather weak. As detailed in �6� the numerical algo-
rithm used to integrate the Langevin equations follows one
of the schemes put forward by Greenside and Helfand �27�.

Let us first consider the case of independent subunits, �
=0. In Fig. 1 we display the behavior with respect to the
noise strength D of the signal-to-noise ratio and the gain of
the output variable S�t� for an array of N=10 noninteracting
bistable units, driven by a weak amplitude rectangular force
�A=0.1� with fundamental frequency �=0.01. For compari-
son purposes, in Fig. 2 we present the results for the signal-
to-noise ratio and the gain of the response of a single bistable
units operating under the action of the same driving term as
in the previous figure Clearly, SR is manifested in the non-
monotonic behavior of the signal-to-noise ratio with respect
to the noise strength in both figures. But, as expected, the R
values for the N=1 case are very small, 1 /10 times the R
values for the N=10 case. On the other hand, the gain in both
cases has the same values, not exceeding unity as required by
the linear response theory. The expected amplification of the
R values are in agreement with the predictions of the central
limit theorem which indicates a reduction by an 1 /N factor

of the output fluctuations of the array with respect to those of
a system with a single unit.

The interactions between the units bring up changes in the
collective response as depicted in Fig. 3. Here we have
coupled the N=10 bistable elements with a weak coupling
strength �=0.2. The existence of coupling increases substan-
tially the nonmonotonic behavior of R vs D of the collective
output relative to the uncoupled units case in Fig. 1. Also, the
peak value is reached at higher values of D. And, more im-
portantly, the gain is clearly above unity for a wide range of
noise values. This fact indicates that the array is operating in
a nonlinear regime even though the driving amplitude A is
rather small.

The dependence on the interaction strength � of R and G
is explicitly demonstrated in the next figure, Fig. 4. Here, we
depict the peak values of the signal-to-noise ratio Rmax and
the gain Gmax on the coupling strength � for an array of N
=10 elements driven by a rectangular input with parameters
�=0.01 and A=0.1. The nonmonotonic behavior with � is
clear. As the coupling strength increases from zero the SR
effects become more pronounced until they reach a maxi-
mum at around �=0.5. Increasing further the coupling
strength leads to a decrease in the peak values.

0 0.1 0.2 0.3 0.4 0.5
D

0

0.2

0.4

0.6

0.8

RS

GS

FIG. 1. Signal-to-noise ratio RS �circles� and gain GS �squares�
of the collective variable for an array of N=10 noncoupled, ��
=0�, bistable units driven by rectangular inputs with �=0.01 and
A=0.1.
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FIG. 2. Signal-to-noise ratio RS �circles� and gain GS �squares�
for a single bistable unit driven by rectangular inputs with �
=0.01 and A=0.1.
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To understand the nonmonotonic behavior of Rmax with �
depicted in the figure above, it is relevant to study the de-
pendence on � of the two components of the correlation
function: its coherent and incoherent parts. In the lower
panel in Fig. 5, we depict the maximum value of the coherent
part of the correlation function �Ccoh� on the coupling
strength � for those noise values at which the amplification is
maximal. In the upper panel, the dependence of the initial
value of the corresponding incoherent part Cincoh�0� with � is
shown. One observes that both quantities show nonmono-
tonic behaviors with the coupling strength. Even though the
peak in the lower panel and the minimum in the higher panel
are obtained for �=0.2, the largest signal-to-noise ratio is
reached at the slightly larger coupling strength �=0.5. This
can be understood by noting that, as depicted in Fig. 6, the
decay of the incoherent part of the correlation function at �
=0.5 is faster than at the other coupling values. Indeed, the
key behavior is that of the incoherent part of the correlation
function. Comparing Cincoh�t� for �=0 and 0.2, we see that
their initial values get smaller as � increases, while the decay
time of the correlation function remains practically the same.
On the other hand, as � increases to 0.5, the initial value also
increases but the decay is much faster. Consequently, the
denominator in the ratio of Eq. �5� decreases and the ratio

reaches a maximum value. As the coupling constant is in-
creased further, the initial values increase and therefore the
values of R decrease. These features indicate that large en-
hancements of the SR quantifiers and large gain values are
achieved when the output fluctuations are small and fast de-
caying. These two combined facts can only be achieved
when the system operates in a nonlinear regime. For a weak
driving force this nonlinear regime is not possible with a
single-unit system or with an array of noninteracting units.

A reliable qualitative explanation of the just mentioned
behaviors is hindered by the multidimensional character of
the potential energy surface. One might try to use some as-
sumptions to obtain a simplifying picture of the S�t� dynam-
ics. In Sec. IV we discuss some of those approximations and
their shortcomings for the range of parameter values of in-
terest to the present work. It is clear that the results presented
above come up due to a complicated interplay of nonlinear-
ity, noise forces, driving forces and the coupling strength
between the individual units. When the subunits are un-
coupled, the N potential energy surface is symmetrical in all
directions with barriers of equal heights. Each subunit has to

0 0.1 0.2 0.3 0.4 0.5
D

0

0.5

1

1.5

2

2.5

3

RS

GS

FIG. 3. Signal-to-noise ratio RS �circles� and gain GS �squares�
of the collective variable for an array of N=10 bistable units driven
by rectangular inputs with �=0.01 and A=0.1 and coupling
strength �=0.2.
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Gmax

FIG. 4. Peak values of the signal-to-noise ratio �Rmax� and gain
�Gmax� of an N=10 array of bistable units vs the coupling strength
�. The driving term is rectangular with �=0.01 and A=0.1.
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FIG. 5. The maximum value of Ccoh�t� and the initial value of
the incoherent part, Cincoh�0� for several values of �.
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θ=0; D=0.09
θ=0.2; D=0.1
θ=0.5; D=0.19
θ=0.8; D=0.24
θ=1.5; D=0.34

FIG. 6. Incoherent part of the correlation functions of the col-
lective variable S�t� for N=10 and several values of �. The driving
term is rectangular with �=0.01 and A=0.1. The noise values used
correspond to the values at which R reaches its peak for the differ-
ent coupling strength.
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overcome the same potential barrier helped by the noise and
driving forces. The reduction in the output fluctuations of the
collective variable with respect to that of a single individual
is simply a consequence of the central limit theorem, i.e., a
size effect. Nonetheless, the output fluctuations of the collec-
tive variable are still as long lived as the fluctuations of each
independent subunit. As the coupling strength is turned on,
the N-dimensional energy surface is distorted. Barriers along
some directions are lowered and transitions among the
minima are much facilitated. Consequently, the fluctuations
will no longer be long lived. This fact, together with the size
effect mentioned above, leads to an increase in Rmax. For
large coupling strengths, the array becomes increasingly
more rigid. Overcoming the barriers requires larger noise
strengths and consequently the fluctuations increase as � in-
creases. One might then expect that there is an adequate
value of the coupling parameter where Rmax is maximized.

In �20� a system-size resonance effect was found in a
system identical to the one treated in the present work. The
origin of that system size resonance is traced back to the

behavior of the linear response function. Consequently, it has
the same origin as the conventional stochastic resonance for
systems operating in a linear regime. As we will discuss
further in Sec. IV, Pikovsky et al. describe the dynamics of
the collective variable S�t� in the Gaussian approximation.
Assuming a slaving principle, they can further construct an
effective Langevin equation for S�t�, and from here, a theo-
retical linear response function is obtained. For the parameter
values used in �20�, the theoretically derived linear response
function matches pretty well the one obtained from numeri-
cal simulations, indicating that the array is operating in the
linear regime. The linear response function shows a non-
monotonic behavior with the system size, analogous to its
behavior with the noise strength. Consequently, the system-
size resonance behavior appears in systems showing conven-
tional stochastic resonance effects. In the present work, we
are considering the same model as in �20�, but we are using
parameter values pertinent to a nonlinear regime dominated
by a control of the output fluctuations by the driving force
which can not be described by the linear response function.
Nonetheless, as in the regime analyzed in �20�, our results
indicate that for the model system considered here, when a
nonmonotonic behavior with the noise strength exists, then
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FIG. 7. �Color online� Phase frequency and phase diffusion co-
efficient as functions of D. The driving term is rectangular with
�=0.01 and A=0.1.
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FIG. 8. Comparison of the signal-to-noise ratio as obtained from
the numerical simulation of the full set of equations and from the
Gaussian approximation for N=10 uncoupled units ��=0�. Other
parameter values are �=0.01 and A=0.1.
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FIG. 9. Comparing the signal-to-noise ratio as obtained from the
numerical simulation of the full set of equations and from the
Gaussian approximation for N=10 weakly ��=0.5� coupled units.
Other parameter values are �=0.01 and A=0.1.
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FIG. 10. Comparison of the signal-to-noise ratio as obtained
from the numerical simulation of the full set of equations and from
the Gaussian approximation for N=10 coupled units with coupling
strength �=1.5. Other parameter values are �=0.01 and A=0.1.
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nonmonotonic behaviors with other parameters like the cou-
pling strength are expected.

Let us now turn our attention to the noise induced syn-

chronization. In Fig. 7 the phase frequency ��̄ph� and the

phase diffusion coefficient �D̄ph� obtained from numerical
simulations are depicted. The driving force in all cases is a
rectangular input with amplitude A=0.1 and fundamental
frequency �=0.01. It is clear that, for this weak driving
force and for a single-unit system, the range of noise values
at which the phase frequency matches the driving fundamen-
tal frequency is extremely narrow to consider that there is a
proper synchronization. On the other hand, for N=10
coupled particles, the range of noise values leading to proper
frequency matching and small phase diffusion coefficients is
substantial. Optimum synchronization is obtained for �=0.5
with a dip at the diffusion constant for D�0.15. This noise
value is slightly smaller than the one at which the signal-to-

noise ratio reaches its maximum value for the same coupling
constant �D�0.19�. Note that as the value of � increases
above 0.5, the range of noise values for synchronization to
take place reduces and it shifts to higher values of D. Per-
haps, the most surprising result is that for uncoupled units,
synchronization between the collective variable and the driv-
ing term is lost. This is indeed in sharp contrast with the
results reported in �19� for the same system with a driving
force with a much larger amplitude A=0.3.

The range of noise values for stochastic resonance and
noise induced phase synchronization do not have to coincide.
Indeed, our results indicate that SR might be present at pa-
rameter values where noise-induced phase synchronization
does not exist. This is not surprising. Both effects are aspects
of the stochastic response of the system to a driving agent.
They are undoubtedly related, but they probe different as-
pects of that response.
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FIG. 11. Comparison of aver-
age phase frequency and phase
diffusion as obtained from the nu-
merical simulation of the full set
of equations and from the Gauss-
ian approximation for N=10 and
�=0. Other parameter values are
�=0.01 and A=0.1.
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FIG. 12. Comparison of aver-
age phase frequency and phase
diffusion as obtained from the nu-
merical simulation of the full set
of equations and from the Gauss-
ian approximation for N=10 and
�=0.2. Other parameter values are
�=0.01 and A=0.1.
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IV. COMPARISON WITH APPROXIMATE DESCRIPTIONS

Due to the nonlinearity of the dynamical equations, the
collective variable does not obey a single closed Langevin
equation, but an infinite hierarchy of equations. Recently, for
finite arrays, approximate descriptions of the dynamics based
on truncations of the infinite hierarchy of fluctuating cumu-
lants have been put forward by Pikovsky et al. �20� and by
Cubero �21�. Following �20�, one can write xi�t�=S�t�+�i�t�.
The second fluctuating moment M�t� is then defined by
M�t�= �1 /N��i�i

2. Actually, as discussed in �21�, one can de-
fine the fluctuating moments of all orders by Mk�t�
= �1 /N��i�i

k, k=1,2 , . . ., and the corresponding fluctuating
cumulants. Clearly, M2�t�=M�t�. Notice that these fluctuat-
ing moments and cumulant moments are different from the
usual nonfluctuating moments and cumulant moments used
by Desai and Zwanzig �see �22��. In particular, notice that
M1�t�=0, while the typical nonfluctuating first moment is
�S�t��. The Gaussian approximation in �20,21� amounts to
neglecting fluctuating cumulants of order higher than two.
Consequently, in the Gaussian approximation, the stochastic
dynamics of the collective variable is described by the equa-
tions

Ṡ = S − S3 − 3MS +�2D

N
��t� + F�t� , �14�

1

2
Ṁ = M − 3S2M − 3M2 − �M + D . �15�

Even within the reduced Gaussian approximation, one has
to rely on numerical treatments to obtain reliable informa-
tion. The predictions of the Gaussian approximation �without
invoking a slaving principle� are compared with those ob-
tained from the full solution of the entire dynamics in the
next figures.

In Figs. 8–10 we show the results obtained for the noise
dependence of the collective signal-to-noise ratio as given by
the simulation of the full set of Langevin equations and by

the Gaussian approximation. In Fig. 8 we consider the case
of uncoupled arrays, while in Figs. 9 and 10 we consider
moderate ��=0.5� and strong ��=1.5� coupling cases, re-
spectively. The Gaussian approximation seems to be more
reliable as the value of the coupling strength increases, al-
though it yields poor results around the noise values at which
R shows its peak. Only for high values of the noise strength
does the Gaussian approximation lead to results in good
agreement with those obtained from the full set of equations.

As discussed in �20�, the Gaussian truncation combined
with a slaving principle, allows for a simplified description
of the dynamics of S�t� in terms of a Langevin equation in an
effective double-well potential and a noise term �2D /N��t�.
This proposal �or the effective potential proposed in �21��
has the attractive feature of reducing the dynamics for the
collective variable to a single Langevin equation in a one-
dimensional potential. Unfortunately, by contrast with the
parameter values for � and D considered in those works, for
the parameter values used here the effective potential evalu-
ated as indicated in the above mentioned references might
not be bounded or might not even exist.

We have also compared the results obtained with the
Gaussian truncation for the average phase frequency and the
phase diffusion coefficient with respect to the ones obtained
from the full set of Langevin equations. In Fig. 11, we depict
the results obtained for N=10 uncoupled units ��=0� driven
by a rectangular periodic force with A=0.1 and fundamental
frequency �=0.01. The Gaussian approximation predicts a
perfect matching of the driving frequency and the phase fre-
quency for a wide range of noise strength values. These re-
sults are completely at variance with those obtained from the
numerical solution of the full set of equations. Thus, the
Gaussian approximation is not reliable for the �=0 case.

On the other hand, as depicted in Fig. 12, the introduction
of even a small coupling between the units drastically
changes the picture. The Gaussian approximation results are
in very good agreement with those obtained from the full set
of equations. Indeed, as depicted in Figs. 12–15, for coupled
units the results of the Gaussian approximation are very good
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compared with those obtained from the full set of dynamical
equations for some range of noise values. The range of noise
values for phase synchronization depends on the coupling
strength. As � is increased the range decreases. In all cases,
synchronization starts disappearing as the noise strength be-
comes large. This is to be expected as large noise values
might induce jumps over potential barriers quite indepen-
dently of the driving force. Thus, the synchrony between
noise-induced jumps and the changes of sign of the external
amplitude tends to disappear. The very same idea of the
phase process introduced previously in Eq. �9� loses its
meaning for large noise strengths.

V. CONCLUDING REMARKS

We have analyzed different aspects of the stochastic col-
lective response of a finite array of globally coupled bistable
units to a weak time-periodic driving force. We focus our

analysis on the phenomenon of stochastic resonance and
noise induced phase synchronization. As demonstrated by
our numerical results, both effects might be present in the
collective response as long as the units are not statistically
independent, i.e., their coupling is not zero.

There are two relevant facts: �i� the gain of the collective
variable might reach values greater than unity and �ii� the
phase frequency might synchronize with the fundamental
driving frequency in wide ranges of the noise strength. These
two features clearly indicate that, for the weak driving forces
considered here, the response of the system can not be ana-
lyzed with the tools of linear response theory. This is so,
even though for a single unit subject to the same weak driver,
LRT provides a very valuable tool to understand SR at quali-
tative and even quantitative levels. Our calculations indicate
that the failure of LRT is essentially due to the strong modi-
fication of the output fluctuations brought up by the external
driving and the coupling between the elements of the array.
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The output fluctuations become much smaller and short lived
than those present in a single-unit system.

We have also analyzed the nonmonotonic behavior of the
signal-to-noise ratio with the coupling strength when other
parameter values �number of particles, amplitude, and period
of the driver� are kept constant. The largest signal-to-noise
ratio occurs at an optimum value of the coupling strength.

Finally, we have also compared our numerical findings
with those obtained by simplifying approximations that have
been put forward in the literature. In particular, the closure of
an infinite hierarchy of fluctuating cumulant moments at the
Gaussian level provides a rather good description of the

simulation results at least for some range of parameter val-
ues. Unfortunately, further simplifications leading to effec-
tive one-dimensional Langevin dynamics for the collective
variable, which seems to provide useful insight on the re-
sponse for some regions of parameter space, become invalid
in the parameter region considered in our work.
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